

ASHRAE NB/PEI SEPTEMBER 2011

VARIABLE REFRIGERANT FLOW SYSTEMS

Technology Overview

Roger Nasrallah, ing. Enertrak inc.

VRF Presentation Contents

- 1. What is Variable Refrigerant Flow?
- 2. Why do we use VRF system?
- 3. How does VRF work?
- 4. VRF Indoor/Outdoor Units Capacity Control
- 5. Benefits of VRF Capacity Control
- 6. Different VRF Systems
- 7. Design Around Diversity
- 8. Comparing VRF to « Conventional Systems »

What is Variable Refrigerant Flow?

The Variable Speed Technology has advanced dramatically over the past years.

VAV: Variable Air Volume (Air handlers)

VFD: Variable Frequency Drive (Pumps & Fans)

VRF: Variable Refrigerant Flow

VRV: Variable Refrigerant Volume

What is Variable Refrigerant Flow?

ASHRAE Journal April 2007

The term "Variable Refrigerant Flow refers to the capability of a HVAC system to control the amount of refrigerant flowing to each of the indoor units/evaporators, enabling the use of multiple evaporators of differing capacities and configurations, individualized comfort control, simultaneous heating and cooling in different zones with heat recovery from one zone to another"

AHRI Standards & Policy Committee June 2009

Variable Refrigerant Flow (VRF) System is an engineered direct expansion (DX) multi-split system incorporating at least one variable capacity compressor distributing refrigerant through a piping network to multiple indoor fan coil units each capable of individual zone temperature control, through a zone temperature control devices and common communications network. Variable refrigerant flow implies three or more steps of control on common, inter-connecting piping

What are VRF Multi Split units?

VRF Multi Split
Direct expansion systems

Used to cool and heat buildings

Why do we use VRF Systems?

- Decentralized System Zone Comfort
- Efficiency Pay for what you use
- Flexible
- Simple to design
- Easy to install and commission
- Good value

How does VRF work?

How does VRF work?

100% Cooling Demand

50% Cooling Demand

Indoor Unit Capacity Control

- Indoor units individually controlled by LEV
- LEV has 2 functions
 - **△** Control the superheat across indoor unit evaporator
 - **△** Acts as solenoid valve to stop refrigerant flow to indoor units that are off

Smart Indoor Coil Design

 If superheat is high the valve will open

 If Superheat is low the valve will close

Outdoor Unit Capacity Control

- Compressor speed is controlled by a VFD based on common saturated suction temperature and capacity required
- Refrigerant volume flow is directly proportional to the compressor speed
- Power input is directly proportional to the cube of the compressor speed

Combined indoor and outdoor Capacity Control

Combined indoor and outdoor Capacity Control

VRF control compared to conventional systems

Comfortable and Efficient Operation in each zone

ZONE Air Conditioning to meet individual requirement!! < Only 1 room >

Different VRF Systems

- 2 Pipe System cooling only
- 2 Pipe System heat pump cooling or heating
- 3 Pipe System simultaneous cooling and heating
- 2 Pipe System simultaneous cooling and heating – air cooled
- 2 Pipe System simultaneous cooling and heating – water and geothermal application

2 Pipe System cooling only

2 Pipe System cooling or heating

2 Pipe System using branch joints

2 Pipe System using branch header

3 Pipe simultaneous cool and heat

- 1. Suction Pipe
- 2. Hot gas Pipe
- 3. Liquid Pipe

Branch selector

Same Operation mode but individual control

Cooling Only

2 Pipe simultaneous cool and heat Air cooled

Efficency of simultaneous heat/cool

Heat Recovery – 2 Pipe system

Two-pipe simultaneous cooling / heating sysytem (R2)

2 Pipe simultaneous cool and heat Water source or geothermal loop

2 Pipe heat recovery Water source or geothermal loop

2 Pipe VS 3 Pipe simultaneous cool and heat

DIVERSITY

- 1. Time of Day
- 2. Heating & Cooling
- 3. Occupancy

Time of Day

3 Tons 5 Tons
Afterniogn Afterniogn

Both zones peak at 5 tons

Do we need 10 tons of cooling???

Time of Day

Afternoon Morning

With VRF, only 8 tons of cooling are required!!

Heating & Cooling

Typical Winter Loads

CHILLER, COOLING TOWER, & PUMPS

Heating & Cooling

CHILLER, COOLING TOWER, & PUMPS

Heating & Cooling

Typical Winter Loads

With VRF Systems

Occupancy

8 Tons Total Cooling

DIVERSITY

1. Time of Day

VRF System can efficiently distribute cooling capacity to keep up with changing solar loads

2. Heating & Cooling

VRF System can heat and cool simultaneously

3. Occupancy

As people move throughout a building, *VRF System* can move energy around to maintain comfort levels within setpoint

10,000 ft² Office Application

Training Room		Break Room	I	Gents		Resource	Records	
			_	Utility		Server Room		
Team Room						Office 5		
Small Conference							Office 6	
							Office 7	
Presidents Office	Office 1	Office 2	Office 3	Office 4	Lobby		Large Co	nference

N

10,000 ft² Office Application

VRF Indoor Unit Overview

- 1, 2 & 4 WayCassette
- Ducted horizontal
- Ducted vertical
- Ceiling Suspended
- Wall Mounted
- Floor Standing
- Water heating modules

Comparing VRF to « Conventional System »

- Total System is stopped during night time
- If one person is working overtime, the complete system must operate
- Unevenly Air Conditioned space
- Possibility of Water Pipe Corrosion
- Maintain Water Quality
- Lots of Piping & Wiring
- Lots of Space Required for Machines
- Time Consuming Design

VRF SYSTEM

Water Cooled Packaged A/C

cooling tower

Water Cooled Chiller & AHU

Air Cooled Chiller & Fan Coil Units

Water Chiller & AHU

Chiller **VRF** Suction temperature 1deg 3deg 4deg 5.5 10.5 8deg 8deg 8deg 10.5 5.5 10% bigger compressor

Operation and Comfort B; normal

C; bad

	"VRF"	C-PAC	Chiller +AHU	Chiller +FCU
Individual use	A	В	C	C
at night or holiday Control temperature	A	С	All bui	A A
Individually		Commo	on duct	
Start quickly	A	A	С	<u>C</u>
			All buil	ding
Quiet (outdoor area)	A	С	С	Č
		Noisy unit & pum		ımp
Quiet (Indoor area)	A	C	В.	A
		Comp	Big fan	

Operation and Comfort B; normal

C; bad

	"VRF"	C-PAC	Chiller +AHU	Chiller +FCU
Individual use	A	В	C	C
at night or holiday Control temperature	A	С	All bui	A A
Individually		Commo	on duct	
Start quickly	A	A	С	<u>C</u>
			All buil	ding
Quiet (outdoor area)	A	С	С	Č
		Noisy unit & pum		ımp
Quiet (Indoor area)	A	C	В.	A
		Comp	Big fan	

Management and Architecture

	"VRF"	C-PAC		
			+AHU	+FCU
Maintenance water	A	В	В	С
quality, pipe corrosion		Cooling	Tower	All
Possibility of water	A	A	A	С
leakage in the room				FCU
Machine space	A	A	С	A
(heat source)			Chiller	
Machine space	A	С	С	A
(Indoor unit)		Floor st	anding	
Future Add unit for	A	A	С	С
increasing A/C load			Chan	ige All

Initial Cost

	"VRF"	C-PAC		
			+AHU	+FCU
Equipment (main unit)	В	A	В	В
Equipment (sub parts)	A	В	В	В
System controller	A	A	A-C	A-C
Engineering time	A	A	B- C	B- C
			variety	

Operating Cost – Full Load

	"VRF"	C-PAC		Chiller
			+AHU	+FCU
Total Cost	A	В	С	B- C
pump(main)	<u>A</u>	<u>A</u>	С	С
pump(cooling tower)	Α	С	С	A
fan(outdoor)	В	В	В	В
fan(indoor)	A	С	С	A
		Big fan,	duct loss	
Transfer loss from	A	A	С	С
refrigerant to water				

Operating Cost – Part Load

	"VRF"	C-PAC	Chiller	Chiller
			+AHU	+FCU
Total Cost	A	В	B- C	В
pump(main)	A	A	B- C	B- C
			Inv-No	inverter
pump(cooling tower)	A	С	С	A
fan(outdoor)	Α	С	С	A
fan(indoor)	A	С	B- C	A
		Big fan, duct loss		
Transfer loss from	A	A	В	В
refrigerant to water				

Benefits of VRF

For Property Owners

- ▲ Can be adapted to meet various applications in buildings due to multiple style and capacity indoor units
- **△ Creates Added Value to the building due to:**
 - Comfort Levels (Space temperature controlled individually
 - Operation only required in zones used
 - Power consumption can be reduced by up to 30%
- ▲ Provides advanced space efficiency at a good price

Benefits of VRF

- For Consultants / Contractors / Installer
 - **▲ Easy to design**
 - **▲ No Zoning considerations with heat recovery**
 - **▲ Short design period compared**
 - **▲ Easy to install**
 - **▲** No need for expensive controls
 - **▲ Easy to maintain**
 - **▲ All system components supplied by one vendor**

Benefits of VRF

For Users

- **△** Can be operated to suit individual needs
- **▲** Exact temperature control for each office/ zone
- **★ Comfortable working space improves productivity.**

QUESTIONS?